Мультиметры
Частотомеры
Приемники
Микросхемы
Радиостанции
Антенны
Тестеры
Аудио
CD-плееры
Усилители
Телефония
Источники питания
Лампы
Стабилизаторы
Генераторы
Таймеры
Датчики
Охранные устройства
Сигнализации
Реле
Индикаторы
Сигнализаторы
Гирлянды
Часы
Дистанционное управление
Передатчики
Регуляторы
Управление устройствами
Управление освещением
Управление нагрузкой
Измерительные устройства
Авто
Разное

Автоматическое переключение антенн
 
Микросхема STV2249E(C) - Сигнальный ТВ-процессор
 
Приемный тракт малогабаритной СВ-Радиостанции
 
Микросхемы МОП и КМОП серий К176, К561
Категория: Микросхемы
Микросхемы МОП и КМОП серий К176, К561

Цифровая микросхема, да и микросхема вообще, это миниатюрный электронный прибор, содержащий в себе кремниевый кристалл, в котором, особым способом, на заводе изготовителе введены примеси. В результате, отдельные участки этого кристалла приобретают функции диодов, транзисторов, сопротивлений, просто проводников и даже конденсаторов (эффект барьерной емкости диода, как у варикапа).

 Общее число этих микроэлементов может достигать сотен тысяч и более на один кристалл. Эти микроскопические участки кристалла соединяются между собой, внутри этого кристалла и образуют некую схему, некий узел, выполняющий определенные функции.

Радиолюбители, да и специалисты, часто воспринимают микросхему как некий черный ящик выполняющий определенные функции и имеющий определенные свойства, либо как набор таких ящичков, которые можно соединить определенным способом и получить нужное устройство. Одним из таких ящичков является ЛОГИЧЕСКИЙ ЭЛЕМЕНТ, которых в одной цифровой микросхеме может несколько.

Микросхемы бывают различных серий и логик. Мы в наших опытах будем использовать микросхемы логик МОП и КМОП, серий К176 и К561. Это наиболее часто применяемые микросхемы в радиолюбительских конструкциях, потому что они имеют минимальный ток потребления и работают в достаточно широком диапазоне питающих напряжений. Но им свойственен один недостаток — бедняги боятся статических разрядов и перегрева при пайке (впрочем, как и почти все другие радиоэлементы). Поэтому желательно для экспериментов сделать макетные платки.

В серию К561 входит более 50-ти типов микросхем разной степени интеграции и функционального назначения. Основой многих из них служат ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ, — "черные ящички", реализующие простейшие функций алгебры логики. С них и начнем знакомство.

На практике, наиболее часто используются элементы пяти типов: И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ. При том элементы И, ИЛИ, НЕ — основные, а элементы И-НЕ, ИЛИ-НЕ представляют собой комбинацию двух элементов.

Но прежде всего уточним: в основу описания работы логических элементов, да и цифровых микросхем вообще, положена двоичная система исчисления, состоящая всего из двух цифр 0 и 1. И эти микросхемы и их элементы могут принимать только два этих состояния : 0 — когда напряжение, почти равно нулю, и 1 — когда напряжение, почти равно напряжению , питания микросхемы (на практике почти почти никогда не учитывается).

Всего две цифры — 0 и 1, но эти две цифры позволяют записывать и запоминать, обрабатывать, практически любые числа. Например десятичное число 168 в нулях и единицах выглядит так: 10101000. Перевести десятичное число в двоичное достаточно просто, нужно делить число на 2, затем брать результат — целое число и снова делить на 2. И каждый раз записывать "1" если есть остаток и "0" если делится без остатка. Например : 168/2=84 (пишем 0), 84/2=42 (пишем 0), 42/2=21 (пишем 0), 21/2=10,5 (пишем 1), 10/2=5 (пишем X)), 5/2=2,5 (пишем 1), 2/2=1 (пишем 0), 1/2=0,5 (пишем 1). 0 делить нельзя, поэтому процесс закончен, теперь записываем в обратном порядке: 10101000.

Графическое изображение логического элемента НЕ показано на рисунке 1. Этот элемент еще называют инвертором. Работает он предельно просто : когда на его входе 1 — на его выходе 0, когда на его входе 0 — на его выходе 1. То есть, он отрицает то, что поступает на его вход, "говорит НЕ", — на входе 1 — на выходе "НЕ 1" (0), на входе 0 — на выходе "НЕ 0" (1).

Следующий логический элемент "И" (рисунок 2), он обозначается символом "&". Входов у этого элемента может быть сколь угодно много, но наш, пока будет с двумя. Логика работы такова. На выходе будет единица только тогда, когда на обеих входах (или на всех сколько их там еще) будет по единице. Во всех других случаях — только ноль.

То есть, если на вход Х1 подали 1, а на вход Х2 - 0, то на выходе - 0. Если на вход Х1 подали 0, а на вход Х2 - 1, то на выходе опять ноль. Если на Х1 - 0 и на Х2 - 0, — снова на выходе 0. Но если на оба входа, и на Х1 и на Х2 подали по единице, тогда и на выходе тоже будет единица.

Разобраться получше поможет простая схема с двумя выключателями и лампочкой (рисунок 3). Пусть выключатели это входы. Когда выключатель включен — 1, когда выключен — 0, а лампа — выход, если горит значит 1, погашена - 0. Смотрите, сколько не замыкая Х1, если Х2 разомкнут лампа не загорится. Тоже касается и Х2. Лампа будет гореть только если оба этих выключателя замкнуть, на оба входа подать 1.

Получается так : хочешь единицу на выходе подавай единицы на оба входа. Если нужен нуль на выходе, — подай нуль на любой вход или на оба входа, как угодно.

Следующий элемент ИЛИ. Его условный символ — 1 в квадратике (рисунок 4). Входов у этих элементов тоже может быть много, но у нашего будет два. Работает он совсем наоборот чем И. Нуль на его выходе может быть только тогда, когда на оба входа (или на все сколько есть) поступает нуль. Во всех других случаях на выходе будет единица. Подадим на вход Х1 - 0, а на вход Х2 -1, на выходе 1. Подадим на Х1 - 1, а на Х2 - 0 , все равно на выходе 1. Подадим на Х1 -1 и на Х2 - 1, на выходе снова 1. Но если подадим на Х1 - 0 и на Х2 - 0 , на выходе будет тоже 0.

Схема с лампочкой для элемента И показана на рисунке 5. Лампа будет гореть при любом включенном выключателе, хоть Х1, хоть Х2, хоть оба сразу. Но погаснет только если их оба выключить. То есть, если хочешь чтобы на выходе был нуль, подай нули на все входы. Нужна единица на выходе — подай единицу на любой вход или на оба сразу, все равно.

Теперь по поводу элементов И-НЕ (рисунок 6) и ИЛИ-НЕ (рисунок 7). Все очень просто — после элемента И или ИЛИ включаем НЕ, и выходные сигналы "переворачиваются". Вместо единиц на выходе нули, а вместо нулей на выходе единицы.

Например И-НЕ работает так : нуль на выходе будет только тогда, когда на оба входа поступят единицы. Во всех других случаях на выходе будет единица. А элемент ИЛИ-НЕ работает так : единица на выходе будет только тогда, когда на обеих входах будут нули. Во всех других случаях на выходе будет нуль.

Обозначение отличается тем, что выход обозначают кружочком. Кружочек — значит инверсия, значит на выходе стоит элемент НЕ.



Поделитесь с друзьями ссылкой на схему:




Чем удобнее всего паять?


 
  • Цифровые часы-будильник
  • Схема электронных приборов на микросхеме К561ЛА7 (К176ЛА7)
  • УКВ-ЧМ диапазон приемника
  • Схема входного усилителя низкочастного частотомера
  • Микросхема К561ЛЕ5 (К176ЛЕ5)
  • Схема входного делителя частотомера
  • Схема бесконтактной системы зажигания (БСЗ) а/м Москвич
  • Микросхемы К561ТР2, К561ТМ2
  • Схема источника трехфазного напряжения
  • Микросхемы TDA8362, TDA8395, TDA4661, TDA4665
  • Схемы одновибраторов
  • Схема цифровых часов-будильника
  • УКВ-ЧМ приемник на ТА2003Р
  • Схема аналогового тахометра на светодиодах
  • Цифровые микросхемы серий К561, К176
  • Схема простого коммутатора зажигания
  • Всеволновый УКВ-ЧМ радиоприемник
  • Схема беспроводных наушников
  • УКВ ЧМ приемник на микросхеме К174ХА2
  • Схема генератора высоковольтных импульсов
  • Симметричный мультивибратор
  • Двухдиапазонный УКВ ЧМ приемник
  • Микроконтроллерная система управления трехфазным двигателем
  • Схема электронной системы зажигания автомобиля Москвич
  • Мультиметр проверяет кварцы
  • Схема регулятора температуры воды
  • DC-DC Преобразователь
  • Схема простого УМЗЧ на микросхеме К548УН1А
  • Автомобильный вольтметр
  • Импульсный высоковольтный генератор
  • Схема простого прерывателя лампы накаливания
  • usb ДУ ЗУ авто автомагнитола автомат адаптер аккумулятор антенна аудио блокиратор будильник видео генератор геркон гирлянды датчик двигатель декодер диапазон динамик дублер емкость зажигание замок зарядка звонок измерение импульс индикатор источник камера катушка клаксон кнопка конвертер конденсатор контур корпус лампа лдс механизм микросборка микросхема микрофон модулей мощность мультивибратор мультиметр наблюдение нагрузка напряжение насос обмотка одометр оптореле освещение охрана передатчик питание плата преобразователь прибор приемник приставка пробник программатор пульт радиоканал радиостанция разветвитель разъем регулятор реле ремонт светодиод сенсор сигнал сигнализатор сигнализация синтезатор сирена система сопротивление стабилизатор схема счетчик таймер тахометр тв телефония термометр тестер тиристор тормоз тракт транзистор трансивера трансформатор триггер тюнер укв управление усилитель частота частотомер часы шифратор эквалайзер элемент
     
    Главная | Регистрация
    Рейтинг@Mail.ru